Informe de Resultados Red Multiambiental de Evaluación de cultivares de trigo*

Comisión de Agricultura CREA - Región Norte de Santa Fe

Campaña 2019/20

Índice

1.	Introducción	2
2.	Objetivos	2
3.	Metodología 3.1. Sitios experimentales 3.2. Análisis estadístico 3.2.1. Estadísticas descriptivas 3.2.2. Diferencias de rendimiento 3.2.3. Análisis interacción genotipo x ambiente 3.2.4. Software	4 5
4.	Resultados 4.1. Estadísticas descriptivas	8
5.	Consideraciones finales	9
6.	Agradecimientos	10
7.	Ribliografía	10

^{*&}quot;Informe elaborado por el Servicio de Estadística Aplicada de la FCA-UNL."

1. Introducción

El cultivo de trigo (*Triticum aestivum*) es una de las alternativas de utilización del suelo en la época invernal más comunes en la región. Su inclusión en la rotación, generalmente asociada con el cultivo de soja de segunda, genera un aporte de C al suelo y cobertura, disminuye la incidencia de enfermedades y plagas en otros cultivos.

El rendimiento de un cultivo (fenotipo) es función del resultado acumulativo de un número de factores que inciden en la interacción entre la expresión del material genético del cultivar o variedad (genotipo) y las condiciones en las cuales la planta crece (ambiente). Los ambientes difieren en la cantidad y calidad de recursos que están disponibles para las plantas (agua, nutrientes y radiación), y las plantas capturan y convierten dichos recursos en biomasa y órganos de interés comercial, según su carga genética, que a su vez es modulada por el ambiente (Yan y Kang, 2002).

Según el objetivo de mejoramiento, los genotipos pueden ser seleccionados para mejorar su adaptación a un amplio rango de condiciones ambientales o bien para condiciones más específicas. En este último caso, la adaptación sitio-específica de los genotipos se relaciona con el fenómeno denominado *interacción genotipo-ambiente* (**GA**), el cual se observa cuando la performance relativa de los fenotipos depende del ambiente en el que crecen (Malosetti et al., 2013). La interacción **GA** reduce la asociación entre los valores fenotípicos y genotípicos, lo cual puede ocasionar que los genotipos seleccionados por su performance en un ambiente tengan tengan mal desempeño en otro. Es por ello que en presencia de fuerte interacción **GA**, gran parte del éxito productivo del cultivo de trigo es el resultado de la elección de los materiales más aptos para cada ambiente.

2. Objetivos

- Resumir los datos de rendimiento de los cultivares de trigo evaluadas en la Red CREA RNSF de Ensayos Multiambientales durante la campaña 2019/20.
- Analizar estadísticamente los resultados comparando los rendimientos de los cultivares globalmente en toda la red.
- Comparar los rendimientos promedio de los cultivares y su estabilidad a través de las localidades de la Red.
- Explorar y describir los patrones de la interacción GA.

3. Metodología

3.1. Sitios experimentales

Durante la campaña 2019/20 se llevaron adelante ensayos comparativos de rendimiento de cultivares de trigo en 2 localidades del Norte de la Provincia de Santa Fe. Los sitios seleccionados para los ensayos en cada Localidad corresponden a establecimientos productivos de miembros CREA de la Región Santa Fe Norte (Tabla 1). La distribución espacial de las localidades se muestra en la Figura 1.

Tabla 1: Localidades inlcuidas en el Ensayo

ID	Localidad	CREA	Miembro
1	Arroyo Ceibal	Villa Ocampo	La Lonja SRL
2	Margarita	Margarita	VicenAgro SRL

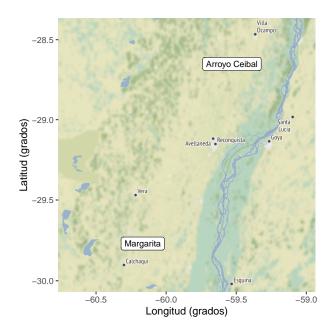


Figura 1: Distribución espacial de las localidades incluidas en la campaña 2019/20

En cada sitio se establecieron ensayos comparativos de rendimiento (ECR) utilizando un diseño experimental sin réplicas con controles sistemáticos (Kempton, 1997). Los materiales fueron sembrados con espaciamiento entre surco (EES) de 21 cm en franjas de entre 4.2 y 9.03 m de ancho por 311 y 355 m de longitud. Las fechas de siembra, densidad, fertilización y fecha de cosecha de cada ensayo se detallan en la Tabla 2.

Debido a la presencia de roya naranja ($Puccinia\ triticina\ Erikss.\ \&\ Henn.$) y amarilla ($Puccinia\ striiformis\ Westend.\ f.\ sp.\ tritici\ Erikson$), en Margarita se realizaron aplicaciones de fungicidas mezcla. La primera aplicación se efectuó con azoxistrobina + cyproconazole el día 05/09/2019 (hoja bandera, $Z_{3.9}$). La segunda aplicación se hizo con carboxamida el 09/10/2019 (grano pastoso-lechoso, $Z_{7.1}$).

Tabla 2: Características generales de los ensayos por localidad

ID	Localidad	Siembra	Densidad	EES	Fertilización (kg/ha)	Cosecha
1	Arroyo Ceibal	24/06/2019	120	0.21	PDA 120	08/11/2019
2	Margarita	26/06/2019	120	0.21	$SPS\ 200\ +\ urea\ 100$	18/11/2019

Los tratamientos evaluados fueron 20 cultivares los cuales se presentan en la Tabla 3 junto al número de localidades en las que fueron evaluados. A excepción del cultivar ACA 360, los cultivares restantes estuvieron presentes en 2 localidades. El cultivar KLEIN TAURO actuó como referencia o *check* y sensor ambiental, con más de una réplica por localidad.

Tabla 3: Cultivares evaluadas y localidades en las que fueron incluidas

Semillero	Variedad	Localidades
ACA	ACA 360	2
ACA	ACA 602	1, 2
Bioceres	GINGKO	1, 2
Buck	BUCK SAETA	1, 2
Buck	SY 300	1, 2
Don Mario	DM ALGARROBO	1, 2
Don Mario	DM AUDAZ	1, 2
Don Mario	DM CEIBO	1, 2
Don Mario	DM FUSTE	1, 2
Don Mario	DM ÑANDUBAY	1, 2
Horus	ATUEL	1, 2

Semillero	Variedad	Localidades
Klein	KLEIN LANZA	1, 2
Klein	KLEIN NUTRIA	1, 2
Klein	KLEIN PROTEO	1, 2
Klein	KLEIN RAYO	1, 2
Klein	KLEIN TAURO	1, 2
MacroSeed	MS INTA 415	1, 2
MacroSeed	MS INTA BONAERENSE 817	1, 2
Nidera	BAGUETTE 450	1, 2
Sursem	NOGAL 111	1, 2

3.2. Análisis estadístico

3.2.1. Estadísticas descriptivas

Se calcularon estadísticas de resumen y gráficos descriptivos por cultivar y localidad para la variable respuesta rendimiento seco, expresado en kg ha $^{-1}$ con 14.5 % de humedad.

El promedio de cada cultivar en la red se calculó utilizando la siguiente expresión:

$$\bar{y}_i = \frac{\sum y_{ij}}{n_i}$$

donde: $\bar{y_i}$ es el rendimiento medio del cultivar i, y_{ij} es el rendimiento del cultivar i en la localidad j y n_i es el número de localidades donde fue evaluado el cultivar i. En aquellos casos donde se contó con más de una franja por localidad, los datos fueron promediados dentro de cada localidad. Así mismo el coeficiente de variación (CV) de cada cultivar en la red se calculó mediante la siguiente expresión:

$$CV_{y_i} = rac{s_{y_i}}{\bar{V}_i} imes 100$$

donde: \bar{y}_i es el rendimiento medio del cultivar i y s_{y_i} es el desvío estándar de los rendimientos del cultivar i a través de las localidades:

$$s_{y_i} = \sqrt{\frac{\sum (y_{ij} - \bar{y}_i)^2}{n_i - 1}}$$

Cabe mencionar que el tamaño de la muestra de ambientes es reducido ya que sólo se disponde información de dos localidades, y en algunos casos de sólo una localidad, por lo tanto la representatividad de los promedios, y más aún, las estimaciones de la variabilidad de los rendimientos a través de los ambientes es limitada.

3.2.2. Diferencias de rendimiento

3.2.2.1. Ajuste rendimientos por controles La información proveniente de las franjas control/sensor (KLEIN TAURO) se utilizó para ajustar los rendimientos de los cultivares no replicados considerando su ubicación, el rendimiento promedio de los controles cercanos y el rendimiento global de la localidad.

En la Tabla 4 se muestran los rendimientos promedio por localidad de los cultivares utilizados como *check*. La respuesta estos cultivares fue muy estable dentro de cada localidad, con coeficientes de variación que van de entorno a 8 %. Esto indica una alta homogeneidad de las condiciones experimentales dentro de estas localidades. Por lo tanto no se aplicó correción.

Tabla 4: Rendimiento seco medio y coeficiente de variación por localidad del cultivar utilizado como control

Localidad	control	media	CV	
Arroyo Ceibal	control	2410	8	
Margarita	control	3440	8	

3.2.2.2. Por localidad Debido a la cantidad de ambientes incluidos en la red, sólo se analizaron las diferencias de rendimiento de los materiales dentro de cada localidad ajustando los rendimientos corregidos por los *checks* a un modelo lineal por localidad.

$$y_{ij} = \mu + \tau_i + e_{ij}$$

donde: y_{ij} representa la respuesta ajustada del cultivar i sembrado en la franja j; μ es la media general del ensayo en esa localidad, τ_i es efecto o diferencia del cultivar i respecto a la media general del ensayo, y e_{ij} el error experimental asociado a la franja j del cultivar i sembrado en la localidad. Se asume que e_{ijk} es una variable independiente y tienen distribución normal con media 0 y varianza σ_e^2 .

Este modelo asume que los datos analizados son una de las posibles realizaciones dentro de cada localidad considerada por separado, por lo tanto el espacio de inferencia es más restringido que en el caso anterior.

Las diferencias de rendimiento entre cultivares se determinaron mediante la prueba de comparaciones múltiples de Tukey, considerando un nivel de significancia de 10 %.

3.2.3. Análisis interacción genotipo x ambiente

Para explorar los patrones de interacción **GA** se utilizó el procedimiento regresión sobre la media (Finlay y Wilkinson, 1963)

3.2.3.1. Modelo de regresión en la media La heterogeneidad ambiental explorada por los cultivares considerados en la red se caracterizó mediante los rendimientos medios de cada Localidad. Esta covariable denominada Índice Ambiental (IA) fue utilizada para modelar la interacción **GA** a partir del siguiente modelo:

$$y_{ij} = \mu_i + \beta_i X_j + e_{ij}$$

donde: y_{ij} es el rendimiento del cultivar i en el ambiente o localidad j, μ_i es la ordenada al origen de cada cultivar, X_j el índice ambiental de la localidad j, y β_i la pendiente o sensibilidad de el cultivar i a los cambios del IA.

Según este modelo, μ_i representa el comportamiento de los cultivares en el ambiente promedio y los coeficientes β_i la sensibilidad de los Variedades a la calidad del ambiente caracterizada por el rendimiento medio de la localidad. Entonces, si la interacción **GA** es significativa representa la heterogeneidad de respuestas, i.e. β distintos para los cultivares. El valor de β indica la sensibilidad del cultivar a los cambios de calidad del ambiente. Si $\beta_i > 1$ indica que el cultivar i tiene una respuesta mayor al promedio (a mayor calidad ambiental, mayor rendimiento), en cambio si $\beta_i < 1$, entonces el cultivar responde menos.

3.2.4. Software

Los datos fueron procesados utilizando el software estadístico R versión 3.5.3 (R Core Team, 2019) y los paquetes nlme (Pinheiro et al., 2018), emmeans (Lenth, 2019), y tidyverse (Wickham, 2017)

4. Resultados

4.1. Estadísticas descriptivas

En la Tabla 5 se presentan los rendimientos y CV por Variedad y Localidad. La variabilidad dentro de cada localidad, la cual indica la dispersión de los rendimientos de los cultivares, fue moderada con CV entre 21 y 23 %. Por otro lado, el nivel de variabilidad de los cultivares a través de los dos ambientes explorado mostro mayor dispersión. Aproximadamente el 50 % de los cultivares tuvo CV entre 16 y 34 %. El cultivar KLEIN RAYO tuvo rendimientos similares en ambos ambientes. Estos CV fueron calculados a partir de dos observaciones lo cual debe ser considerado al momento de evaluar su importancia.

La Figura 2 muestra los rendimientos medios por localidad y el rendimiento medio de la campaña con línea continua. El rendimiento promedio obtenido en la localidad Margarita es superior (cerca de 900 kg/ha) al observado en Arroyo Ceibal con similar nivel de variabilidad.

En la Figura 3 se presentan los rendimientos medios y desviaciones estándar de los cultivares considerando la variabilidad entre localidades. Este gráfico muestra la variación de los rendimientos medios dentro de la red y la variabilidad de respuesta según las localidades. En general todos los cultivares presentaron comportamiento similar entre los distintos ambientes, es decir, el ordenamiento según el potencial de la localidad, con laguna excepciones donde se invirtió el patrón o los rendimientos fueron similares.

Tabla 5: Rendimiento seco medio y coeficiente de variación por Variedad y localidad

	Arroyo Ceibal	Margarita	media	CV
DM AUDAZ	2447	4737	3592	45
GINGKO	2700	3979	3340	27
DM FUSTE	2447	4096	3272	36
ATUEL	2852	3614	3233	17
BAGUETTE 450	2852	3358	3105	12
BUCK SAETA	2291	3875	3083	36
ACA 360		3026	3026	
DM CEIBO	2532	3343	2937	20
KLEIN TAURO	2410	3440	2925	25
KLEIN NUTRIA	2230	3390	2810	29
MS INTA BONAERENSE 817	3048	2567	2808	12
KLEIN LANZA	2347	3225	2786	22
DM ÑANDUBAY	2072	3451	2761	35
MS INTA 415	2099	3404	2751	34
SY 300	2236	3151	2694	24
KLEIN PROTEO	1934	2965	2449	30
KLEIN RAYO	2423	2414	2418	0
ACA 602	2658	2149	2403	15
DM ALGARROBO	1718	2041	1880	12
NOGAL 111	866	1868	1367	52
media	2324	3205	2782	25
CV	21	23	18	50

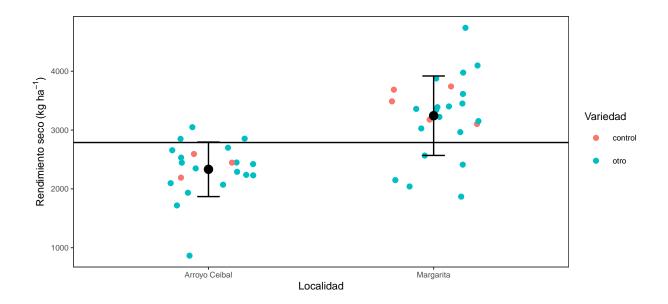


Figura 2: Rendimiento seco medio y desvío estándar por Localidad

La Figura 4 presenta la relación entre los rendimientos medios y la estabilidad (indicada por el CV) de los cultivares a través de las localidades incluidas en la red durante la campaña 2019/20. Tomando el rendimiento

y CV medios de la red (líneas punteadas), se observa que los cultivares se diferenciaron principalmente por su estabilidad, aunque esta está estimada solo con la información de dos localidades. Se destacan NOGAL 111 por bajo rendimiento y baja estabilidad, DM AUDAZ en el extremo opuesto y KLEIN RAYO por rendimiento promedio con baja variabilidad. En el grupo de cultivares con menos variación entre localidades y mayor rendimiento se encuentra BAGUETTE 450 y ATUEL.



Figura 3: Rendimientos medios y desviación estándar de los cultivares

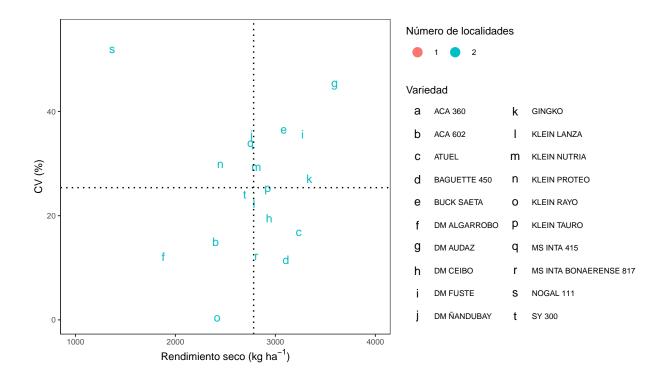


Figura 4: Rendimiento seco medio (en kg/ha) y CV (%) de los cultivares evaluados en la campaña 2017/19

4.2. Diferencias entre cultivares

Los resultados del análisis de la varianza para la localidad Arroyo Ceibal indican que no se observaron diferencias estadísticamente significativas entre los cultivares (p=0.1624). En cambio, para la localidad Margarita se observaron algunas diferencias entre materiales (p=0.043).

Tabla 6: Tabla de Análisis de la Varianza del modelo lineal para Margarita

	gl	SC	CM	F	valor p
Variedad	19	10156877.0	534572.47	6.333074	0.0430192
Residuals	4	337638.6	84409.64		

En la Tabla 7 se listan los valores medios ajustados, errores estándar e intervalos de confianza de los rendimientos medios de cada cultivar para la localidad Margarita. La amplitud de los IC_{95} responde a que el espacio de inferencia se reduce a una localidad y la precisión alcanzada según el número de réplicas.

Tabla 7: Rendimientos intervalos de confianza $95\,\%$ ajustados por el modelo para Margarita

	Variedad	Rend. medio	Error estándar	gl	LI IC95	LI IC95	grupo
19	DM AUDAZ	4737	291	4	3930	5543	1
6	DM FUSTE	4096	291	4	3290	4903	12
2	GINGKO	3979	291	4	3173	4786	12
15	BUCK SAETA	3875	291	4	3068	4681	12
18	ATUEL	3614	291	4	2807	4420	12
14	DM ÑANDUBAY	3451	291	4	2644	4257	12
1	KLEIN TAURO	3440	130	4	3080	3801	12
20	MS INTA 415	3404	291	4	2597	4211	12
12	KLEIN NUTRIA	3390	291	4	2583	4197	12
8	BAGUETTE 450	3358	291	4	2551	4164	12
4	DM CEIBO	3343	291	4	2536	4149	12
13	KLEIN LANZA	3225	291	4	2418	4031	12
17	SY 300	3151	291	4	2344	3958	12
16	ACA 360	3026	291	4	2220	3833	12
10	KLEIN PROTEO	2965	291	4	2158	3771	12
3	MS INTA BONAERENSE 817	2567	291	4	1760	3373	12
5	KLEIN RAYO	2414	291	4	1607	3220	12
11	ACA 602	2149	291	4	1342	2955	12
9	DM ALGARROBO	2041	291	4	1235	2848	2
7	NOGAL 111	1868	291	4	1062	2675	2

De acuerdo con el test de comparación de medias, sólamente el cultivar DM AUDAZ se diferenció de los de menor rendimiento (DM ALGARROBO y NOGAL 111). Pese a haber diferencias del orden de 2000 kg ha⁻¹ entre NOGAL 111 y DM FUSTE, dichas diferencias no fueron estadísticamente significativa ya que el modelo considera la heterogeneidad entre localidades y dentro de la localidad estimada solamente por las franjas testigo.

4.3. Interacción GA

4.3.1. Modelo de regresión sobre la media

Las diferencias de los rendimientos medios de cada Localidad resumen la heterogeneidad de condiciones ambientales a las cuales fueron sometidos los cultivares evaluados (Figura 3). Utilizando esta información se construye un índice ambiental (IA) que se utiliza para explorar la interacción genotipo x ambiente a partir de rendimientos de cada variedad y ambiente. Los datos no fueron suficientes para detectar modelar heterogeneidad entre los materiales en la relación a la sensibilidad, es decir la relación entre el IA y los rendimientos. No

obstante, a modo descriptivo se presentan las gráficas correspondientes a las normas de reacción (Figura 5) a los cambios del *IA* en relación a la respuesta promedio (recta 1:1).

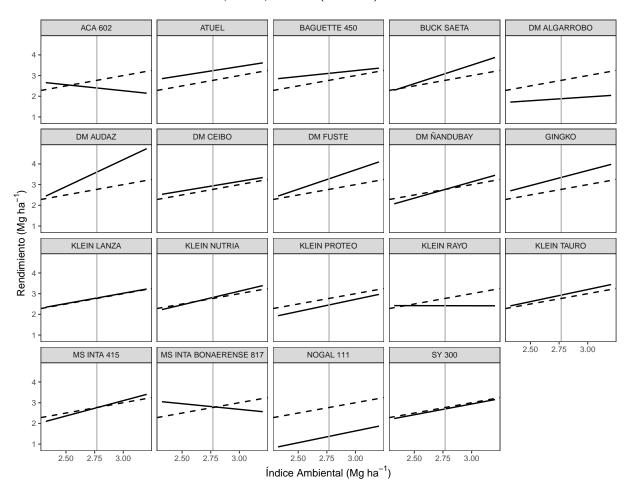


Figura 5: Respuesta diferencial de cada Variedad a los cambios del IA

Las pendientes (β) de las rectas (línea sólida) representan la sensibilidad de los cultivares a la calidad del ambiente caracterizada por el rendimiento medio de la localidad. La sensibilidad promedio (línea punteada) representa la respuesta general de todos los cultivares. Para un Variedad cualquiera, si el valor de la pendiente es $\beta_i > 1$, la Variedad en cuestión tiene mayor sensibilidad a los cambios de calidad del ambiente (a mayor calidad ambiental, mayor rendimiento, y vice versa). En cambio si $\beta_i < 1$, entonces la Variedad es menos sensible y tendría mejores respuestas en ambientes malos y respuestas inferiores al promedio en ambientes buenos. Las diferencias entre las pendientes de los distintos cultivares representa la interacción **GA**.

Salvo algunas excepciones, la norma de reacción de todos los cultivares fue muy similar a la evolución de IA. Los cultivares DM AUDAZ, DM FUSTE y BUCK SAETA, mostraron un patron de resupesta que se incrementó por encima del pormedio en la localidad de mayor potencial. En el otro extremo, ACA 602, KLEIN RAYO y MS INTA BONAERENSE 817 mostraron rendimentos menores al promedio en Margarita. Las variedades ATUEL, BAGUETTE 450, GINGKO, mostraron rendimientos superiores al promedio en ambos ambientes.

5. Consideraciones finales

En general se observó disepersión en los niveles de variabilidad de los rendimientos de cada cultivar a través de las dos localidades evaluadas, y consistentemente moderada heterogeneidad de respuesta dentro de cada localidad. Las diferencias de los rendimientos globales estuvieron en el orden de 2000 kg o menos y sólamente fueron estadísticamente significativas en la localidad Margarita debido a la cantidad de réplicas.

El estudio de la interacción GA mediante el método de regresión confirmó la heterogeneidad de las respuestas

de los cultivares donde los patrones de reacción fueron similares al patrón promedio en algunos cultivares mientras que otros mostraron cierto grado de respuesta positiva a la mejora del ambiente.

6. Agradecimientos

- A las empresas semilleras por haber confiado un año más en nuestra zona y en la utilidad de los Ensayos Comparativos de Rendimiento.
- A las Empresas CREA de la Región Norte de Santa Fe que año tras año realizan el esfuerzo de siembra conducción y cosecha de estas macro parcelas en sus establecimientos, dedicando personal tiempo y recursos para tal fin.

7. Bibliografía

Cornelius, P.L., J. Crossa, and M.S. Seyedsadr. (1996). Statistical tests and estimators for multiplicative models for genotype-by-environment interaction. In M.S. Kang and H.G. Gauch, Jr. (ed.) Genotype-by-environment interaction. CRC Press, Boca Raton, FL.

Dumble S. (2017). GGEBiplots: GGE Biplots with 'ggplot2'. R package version 0.1.1. https://CRAN.R-project.org/package=GGEBiplots

Federer, W. T.; Reynolds, D. B.; Crossa, J. Combining Results from Augmented Designs over sites. Agronomy Journal 2001, 93:389–395.

Finlay, K. W., and Wilkinson, G.N. (1963). The analysis of adaptation in a plant-breeding programme. Aust. J. Agric. Res. 14, 742–754.

Gauch, H. G. Statistical Analysis of Yield Trials by AMMI and GGE. Crop Science 2006, 46, 1488, doi: 10.2135/cropsci2005.07-0193.

Kempton, R.A. (Ed) (1997). Statistical methods for plant variety evaluation. Plant breeding series. Chapman & Hall, London. pp. 191.

Malosetti, Marcos, Jean-Marcel Ribaut, and Fred A. van Eeuwijk. 2013. "The Statistical Analysis of Multi-Environment Data: Modeling Genotype-by-Environment Interaction and Its Genetic Basis." Frontiers in Physiology 4 (March). doi:10.3389/fphys.2013.00044.

Piepho, H.P., C. Richter, J. Spilke, K. Hartung, A. Kunick, and H. Thöle. 2011. Statistical aspects of on-farm experimentation. Crop and Pasture Science 62(9): 721.

Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2018). nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-137, URL: https://CRAN.R-project.org/package=nlme.

R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Russell Lenth (2019). emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.3.3. https://CRAN.R-project.org/package=emmeans

Wickham, H. (2017). tidyverse: Easily Install and Load the 'Tidyverse'. R package version 1.2.1. https://CRAN.R-project.org/package=tidyverse

Yan, W.; Kang, M. S. (2002). GGE Biplot Analysis: A Graphical Tool for Breeders, Geneticists, and Agronomists. 1st edition. CRC Press. pp. 288.